【前沿进展】Nat Commun | 韩晓/李锴团队揭示巨噬细胞调控米色脂肪产热的机制

全球约有6亿成年人超重或肥胖,这相当于总人口数的近三分之一。肥胖不仅仅是一个健康问题,还会对经济发展产生重要影响。过度超重、肥胖会引发多种相关并发症,降低生产力,对国民经济的整体健康造成损害。许多组织和政府已经在采取措施来应对肥胖问题,包括推动公众教育、促进健康饮食习惯、鼓励体育活动,以及加强科学研究等。脂肪组织分为白色脂肪、棕色脂肪和米色脂肪。其中白色脂肪组织储存脂质,是肥胖的物质基础;棕色脂肪可以分解脂质产生热能;米色脂肪既不同于白色脂肪,也不完全等同于棕色脂肪。它兼具白色脂肪和棕色脂肪的功能,并能在两者之间转换。米色脂肪位于皮下,可响应环境变化(如温度)改变自身形态和功能。通过将线粒体呼吸与ATP合成过程解偶联,米色脂肪能够产生热量。考虑到人体巨大的体表面积,通过激活米色脂肪产热来增加能量消耗,有望成为改善肥胖及其相关代谢性疾病的一种新方法。

米色脂肪产热激活受交感神经系统(SNS)和脂肪组织巨噬细胞(ATMs)的共同调节,但启动和维持这一过程的信号尚未完全清楚。借助于动物模型的研究发现:皮下脂肪的交感神经纤维起源于腹腔神经节【1】;在寒冷刺激时,这些纤维会释放去甲肾上腺素(NE),后者与米色脂肪细胞表面的β3肾上腺素能受体(AR)结合,通过激活环AMP/蛋白激酶A(cAMP/PKA)信号通路产热。有趣的是,交感神经切除的啮齿类动物在冷应激状态下体温并没有出现显著降低【2】,这表明交感神经可能并不是产热脂肪活性变化的唯一因素【3-5】。

除交感神经外,近年来的研究发现脂肪组织巨噬细胞对于米色脂肪产热同样非常重要。多项基于基因改造动物的研究发现:巨噬细胞Irs2【6】、Mecp2蛋白【7】或分泌因子Slit3【8】的缺失会改变局部交感神经活性,间接影响米色脂肪产热。值得关注的是,2011年Nature、2014年Cell杂志的两篇论文(均为Ajay Chawla课题组)报道:巨噬细胞可以直接分泌NE【9,10】,调节米色脂肪产热。然而,此观点在之后迅速受到质疑【11】。撇开有争议的NE不谈,近期发现其他由巨噬细胞及免疫细胞分泌的一些细胞因子,如IL-10【12】、IL-1β【13】和TGFβ【14】也能调控米色脂肪产热。这些研究提示了一个科学问题:除了通过影响交感神经间接发挥作用外,脂肪组织巨噬细胞能否直接调控米色脂肪产热?

2024年2月22日,南京医科大学韩晓、李锴团队在Nature Communications杂志发表了题为M2 macrophages independently promote beige adipogenesis via blocking adipocyte Ets1的研究论文。他们发现在排除交感神经的作用后,M2型巨噬细胞依旧能够调控米色脂肪产热,而且这一作用是通过阻断脂肪细胞中转录因子Ets1的表达实现的。

团队人员通过注射6-羟基多巴胺(6OHDA)诱导小鼠交感神经元凋亡后发现:在排除交感神经的作用后,使用氯膦酸盐脂质体清除脂肪组织巨噬细胞依旧能够显著抑制米色脂肪产热——即巨噬细胞具有不依赖于交感神经系统的促米色脂肪产热功能。课题组借助在体巨噬细胞移植等实验进一步证实了M2型巨噬细胞对脂肪米色化的独立调控作用。在相关机制方面,他们使用多组学筛选、验证等手段,明确了是转录因子Ets1介导了巨噬细胞的这一作用。具体表现为Ets1敲入小鼠对寒冷环境极度不耐受,整体产热以及脂代谢出现异常;而敲除小鼠能够改善高脂饮食喂养导致的肥胖和代谢紊乱。通过Chip-seq、ATAC-seq等方法分析,发现Ets1可作为转录因子调控线粒体功能:即Ets1一方面可以抑制线粒体氧化磷酸化复合物基因的表达阻断线粒体新生;另一方面激活自噬从而促进线粒体清除。

总而言之,本研究发现了M2型巨噬细胞和脂肪细胞之间的直接交流,为探究米色脂肪产热机制、拮抗肥胖的干预靶点提供了新线索。

南京医科大学基础医学院韩晓教授与李锴副教授为本文的共同通讯作者,博士研究生吴苏阳与医药实验动物中心邱晨副教授为本文的共同第一作者。

原文链接:

https://www.nature.com/articles/s41467-024-45899-4

制版人:十一

参考文献

[1] Hardie, D. G. et al. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 13, 251–262 (2012).

[2] Zhang Y. et al. AMP as a low-energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation. Cell Metab. 18, 546-555 (2013).

[3] Zhang, C. S. et al. The lysosomal v-ATPase–Ragulator complex Is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metab. 20, 526–540 (2014).

[4] Zhang, C. S. et al. Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK. Nature 548, 112–116 (2017).

[5] Zong Y. et al., Hierarchical activation of compartmentalized pools of AMPK depends on severity of nutrient or energy stress. Cell Res. 29, 460-473 (2019).

[6] Li, M. et al. Transient receptor potential V channels are essential for glucose sensing by aldolase and AMPK. Cell Metab. 30, 508–524 (2019).

[7] Li, M. et al. Aldolase is a sensor for both low and high glucose, linking to AMPK and mTORC1. Cell Res. 31, 478-481. (2021).

[8] Myers, R. W. et al. Systemic pan-AMPK activator MK-8722 improves glucose homeostasis but induces cardiac hypertrophy. Science 357, 507–511 (2017).

[9] Ma T. et al. Metformin Activates AMPK through the Lysosomal Pathway. Cell Metab. 24, 521-522 (2016).

[10] Ma T. et al. Low-dose metformin targets the lysosomal AMPK pathway through PEN2. Nature. 603, 159-165 (2022).

1. Jiang H, Ding X, Cao Y, Wang H, Zeng W (2017) Dense Intra-adipose Sympathetic Arborizations Are Essential for Cold-Induced Beiging of Mouse White Adipose Tissue. Cell Metab 26: 686-692.

2. Levin BE, Sullivan AC (1984) Dietary obesity and neonatal sympathectomy. II. Thermoregulation and brown adipose metabolism. Am J Physiol 247.

3. Hamilton JM, Bartness TJ, Wade GN (1989) Effects of norepinephrine and denervation on brown adipose tissue in Syrian hamsters. Am J Physiol 257.

4. McElroy JF, Wade GN (1986) Short photoperiod stimulates brown adipose tissue growth and thermogenesis but not norepinephrine turnover in Syrian hamsters. Physiol Behav 37: 307-311.

5. Trayhurn P, Wusteman MC (1987) Apparent dissociation between sympathetic activity and brown adipose tissue thermogenesis during pregnancy and lactation in golden hamsters. Can J Physiol Pharmacol 65: 2396-2399.

6. Rached MT, Millership SJ, Pedroni SMA, Choudhury AI, Costa ASH, et al. (2019) Deletion of myeloid IRS2 enhances adipose tissue sympathetic nerve function and limits obesity. Mol Metab 20: 38-50.

7. Wolf Y, Boura-Halfon S, Cortese N, Haimon Z, Sar Shalom H, et al. (2017) Brown-adipose-tissue macrophages control tissue innervation and homeostatic energy expenditure. Nat Immunol 18: 665-674.

8. Wang YN, Tang Y, He Z, Ma H, Wang L, et al. (2021) Slit3 secreted from M2-like macrophages increases sympathetic activity and thermogenesis in adipose tissue. Nat Metab 3: 1536-1551.

9. Nguyen KD, Qiu Y, Cui X, Goh YP, Mwangi J, et al. (2011) Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480: 104-108.

10. Qiu Y, Nguyen KD, Odegaard JI, Cui X, Tian X, et al. (2014) Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 157: 1292-1308.

11. Fischer K, Ruiz HH, Jhun K, Finan B, Oberlin DJ, et al. (2017) Alternatively activated macrophages do not synthesize catecholamines or contribute to adipose tissue adaptive thermogenesis. Nat Med 23: 623-630.

12. Rajbhandari P, Thomas BJ, Feng AC, Hong C, Wang J, et al. (2018) IL-10 Signaling Remodels Adipose Chromatin Architecture to Limit Thermogenesis and Energy Expenditure. Cell 172: 218-233.

13. Okla M, Zaher W, Alfayez M, Chung S (2018) Inhibitory Effects of Toll-Like Receptor 4, NLRP3 Inflammasome, and Interleukin-1β on White Adipocyte Browning. Inflammation 41: 626-642.

14. Wankhade UD, Lee JH, Dagur PK, Yadav H, Shen M, et al. (2018) TGF-β receptor 1 regulates progenitors that promote browning of white fat. Mol Metab 16: 160-171.

(可上下滑动阅览)

原标题:《【前沿进展】Nat Commun | 韩晓/李锴团队揭示巨噬细胞调控米色脂肪产热的机制》